The Audi Q3 Sportback TFSIe Plug-In Hybrid: The Complete Guide For Ireland

Audi Q3 Sportback TFSIe Plug-In Hybrid
Price: From €50,115
Type of electric vehicle: Plug-In Hybrid Electric Vehicle (PHEV)
Body type: Hatchback
Battery size: 13.0 kWh
Electric range (WLTP): 46 - 50 km
Tailpipe emissions: 46 - 38 g (CO2/km)


Electric Cars: The Basics


For those of you new to zero-emission electric driving, we recommend a read of the following articles:


Sign up to the e-zoomed Electric Living newsletter

The Audi Q3 Sportback TFSIe PHEV


Audi AG, a Bavaria (Germany) based luxury automotive manufacturer is a wholly owned subsidiary of Volkswagen AG, the Germany automotive group. Volkswagen AG is one of the leading automotive companies in the global electric vehicle (EV) industry. Volkswagen has committed to an investment up to Euro 30 billion by 2023. It aims to sell 3 million electric vehicles by 2025 and launch up to 70 new EV models over the next 10 years.

With the launch of its electric vehicle ID. Family, VW is fast cementing a dominant position is to become the world’s largest electric vehicle manufacturer by 2028, with the automotive behemoth planning to manufacturer 22 million electric vehicles.  Audi also offers plug-in hybrid electric vehicles (PHEVs), to include:

The Audi Q3 is a compact premium crossover SUV. The Q3 has been manufactured since 2011. The SUV is now in its second generation and uses the Volkswagen Group MQB platform. The Audi Q3 is available as a standard SUV or Sportback body style. The Q3 Sportback is available as a plug-in hybrid electric vehicle (PHEV).

Its compact, stylish, high quality and can save you money while driving on e-mode. The front-wheel drive Audi Q3 PHEV is a good entry-level option to consider in the higher-priced upmarket segment. For those seeking a sportier looking, but environmentally-friendly premium-badged compact EV, the Q3 plug-in hybrid should be on the list.

The Audi plug-in hybrid electric vehicle has a 13 kWh onboard EV battery, with a quoted WLTP pure electric range up to 50 km. Though the emission-free electric range is not as impressive as some alternative PHEVs, for shorter distances, in particular, in towns and cities, an emission-free electric range over 50 km is more than sufficient.

Despite the quoted manufacturers electric range, expect the real-world range to be lower, impacted by a number of factors, to include: the way the electric vehicle (EV) is driven, the conditions of the road, the passenger load, the regenerative braking profile in use, weather condition, wheel size, etc. A real-world range will be closer to 44 km.

We at e-zoomed recommend (when appropriate), to always choose the maximum available regen braking profile in the EV. This will help recuperate more energy and increase the overall fuel-economy of the electric car. Audi claims a 2.0 l/100 km fuel economy. The real-world fuel economy will vary based on the amount the EV is driven on electric mode.

We also suggest keeping the EV battery ‘topped up’, as the more the EV can be driven on electric mode, the more improved the efficiency of the electric vehicle and higher the financial savings. Keep in mind that driving an EV per km is less than 10 cents i.e. much cheaper than driving on petrol or diesel.

The Q3 EV has a 7.2 kW onboard charger, sufficient for charging the 13 kWh EV battery relatively quickly at home or at public AC charging. The EV can be fully charged in 3 hours and 45 minutes. Though an EV can be charged using a 3-PIN domestic socket, we would encourage EV drivers to charge using a dedicated residential EV charger like Easee: faster and safer in charging operation, compared to a domestic 3-PIN plug! The EV does not offer DC charging compatibility.

The Audi Q3 PHEV pairs the electric motor, with the 1.4-litre petrol internal combustion engine (ICE), offering a combined system power of 245 PS and 400 Nm torque. The PHEV can accelerate from 0 to 100 km/h in 7.3 seconds. Of course, a plug-in hybrid electric vehicle will be a little heavier than the conventional internal combustion engine variant, given the additional weight of the onboard EV battery. However, a PHEV does gain from the availability of instant torque.

In terms of practicality, the rear seats are impacted by the sloping roofline i.e. lower headroom for rear seat passengers. However, the front seats have ample headroom and legroom. Also impacted by the roofline, is the rear visibility. Despite the boot reduced in size due to the placement of the EV battery, the EV still offers 380 L.

As for interior quality, the Audi plug-in hybrid does not disappoint. The interior is completed to a high finish and is technology-filled, to include: hill descent control, pre-Sense front with pedestrian and cyclist detection, camera-based traffic sign recognition, lane departure warning, Audi virtual cockpit, MMI navigation plus with MMI touch display, Audi Smartphone Interface and a lot more.

The Audi Q3 Sportback TFSIe Plug-In Hybrid has claimed emissions up to 46 g (CO2/km). Bottom-line, electric driving is good for the environment and the wallet!


PROS CONS
High quality interior and standard specificationsLimited electric range (50 km)
Attractive exterior stylingAll-wheel drive (AWD) not available
Practical for small familiesHigh tailpipe emissions (46 g) compared to more recent PHEVs

Gallery


The Audi Q3 Sportback TFSIe PHEV (credit: Audi)


At A Glance
EV Type:Plug-In Hybrid Electric Vehicle (PHEV)
Body Type:Hatchback
Engine:Petrol-Electric
Available In Ireland:Yes

Variants (2 Options)
Audi Q3 Sportback SE 45 TFSIe S tronic (from € 50,115)
Audi Q3 Sportback S line 45 TFSIe S tronic (from € 53,910)

EV Battery & Emissions
EV Battery Type:Lithium-ion
EV Battery Capacity:Available in one battery size: 13.0 kWh
Charging:DC charging not available. Onboard charger 7.2 kW AC (0% – 100%: 3 hrs and 45 mins)
Charge Port:Type 2
EV Cable Type:Type 2
Tailpipe Emissions:46 – 38 g (CO2/km)
Warranty:8 years or 160,000 km

Average Cost Of Residential Charging
Battery net capacity : 8.8 kWh€ 2.10
Battery net capacity : 11.6 kWh€ 2.78
Battery net capacity : 12.0 kWh€ 2.87
Battery net capacity : 13.10 kWh€ 3.14
Battery net capacity : 14.10 kWh€ 3.37
  • Note 1: The average cost of residential electricity in Ireland varies depending on the region, supplier and type of energy used. An average for Ireland is 23.97 cents/kWh.
  • Note 2: Not all EV manufactures make available the data on net EV battery capacity, and in a number of instances the EV battery capacity advertised, does not state if it is gross or net capacity. In general, usable EV battery capacity is between 85% to 95% of the gross available capacity.

Charging Times (Overview)
Slow charging AC (3 kW – 3.6 kW):6 – 12 hours (dependent on size of EV battery & SOC)
Fast charging AC (7 kW – 22 kW):3 – 8 hours (dependent on size of EV battery & SoC)
Rapid charging AC (43 kW):0-80%: 20 mins to 60 mins (dependent on size of EV battery & SoC)
  • Note 1: SoC: state of charge

Dimensions
Height (mm):1567
Width (mm):2022
Length (mm):4500
Wheelbase (mm):2680
Turning Circle (m):11.8
Boot capacity (L):380

45 TFSIe S tronic
EV Battery Capacity:13.0 kWh
Pure Electric Range (WLTP):46 – 50 km
Electric Energy Consumption (kWh/100km):17.1 – 17.3
Fuel Consumption (l/100 km):2.0 – 1.7
Charging:DC charging not available. Onboard charger 7.2 kW AC (0% – 100%: 3 hrs and 45 mins)
Top Speed:210 km/h
0-100 km/h:7.3 seconds
Drive:Front-wheel drive (FWD)
Electric Motor (kW):N/A
Max Power (PS):245
Torque (Nm):400
Transmission:Automatic
Seats:5
Doors:5
Unladen Weight (kg):1,740
Colours:10
NCAP Safety Rating:Five-Star

Electric Vehicles (EVs): Top 5 Jargons


There is no doubt, in that, for those new to electric driving, the terminology can be both daunting and confusing. We have chosen the top 5 jargons to help you get more familiar with electric vehicles (EVs)!

Top 5 Jargons : Electric Vehicles (EVs)
EV (Electric Vehicle) An EV is any vehicle that uses ‘electricity’ or an ‘electric motor’ to power the vehicle. The electric motor derives its power from a rechargeable battery or batteries.  In general,  EVs are less dependent on petrol or diesel as fuel, and in the case of pure electric cars, not dependent at all, on petrol/diesel for propulsion. EVs encompass all types of electric vehicles, to include Battery-Electric Vehicles (BEVs), Plug-in Hybrid Electric Vehicles (PHEVs), Extended Range Electric Vehicles (E-REVs) and Fuel Cell Electric Vehicles (FCEVs).  
Regenerative BrakingDriving at all times requires braking. However, on more densely populated roads, the frequency and intensity of braking increases, reducing the efficiency of the vehicle. Regenerative braking is the process of capturing energy, otherwise wasted during braking. According to the rules of physics, energy cannot be destroyed, instead it simply transfers from one state to another. The same principle applies to braking. The kinetic energy that propels a car forward is usually displaced or wasted as heat. Regenerative braking captures this kinetic energy, that in turn recharges an onboard EV battery, increasing both efficiency and electric range. Electric cars like Toyota Prius PHEV, Jaguar I-PACE BEV and Tesla Model 3 BEV use regenerative braking to increase efficiency and electric range. 
TorqueTorque (Nm) is the measure of the force that can cause an object to rotate about an axis. Torque is a key factor in determining acceleration of a vehicle and is defined as the engines rotational speed. Torque is most commonly defined as the force required to twist an object. For example, a wrench being used. The heavier a car, the more important is the role of torque i.e. the vehicle needs more rotational force to help it accelerate faster. 
WLTP (Worldwide Harmonised Light Vehicle Test Procedure)In a bid to continue to improve the quality of data released by automotive manufacturers (OEMs), on efficiency, range and CO2 emissions, Europe has introduced the WLTP testing procedure. WLTP is seen as a significant improvement over the New European Driving Cycle (NEDC) testing standard designed in the 1980s. In general, WLTP data is more realistic compared to NEDC! WLTP has been developed with the aim of becoming a global standard, so that cars can be easily compared between regions. However, real world driving data will still differ from WLTP data. As an example, the real world electric range of an electric car can be significantly lower than the stated WLTP range, depending on driving style, driving conditions, weather, onboard services used and more!    
ULEVs (Ultra-Low Emission Vehicles) An ultra low emission vehicle is any vehicle that emits less than 75g of CO2/km and is capable of operating with zero-tailpipe emissions for at least 10 miles. In general, ULEVs release emissions that are at least 50% lower than petrol and diesel cars, by using low carbon technologies. ULEVs include all types of electric vehicles: BEVs, PHEVs, E-REVs etc. and are a key solution in improving air quality. There are currently numerous ULEVs available, to include e-cars, e-vans, e-motorcycles, e-mopeds and e-taxis. Examples include: Nissan Leaf, BMW i3, MINI Countryman PHEV and Renault Kangoo ZE.

While e-zoomed uses reasonable efforts to provide accurate and up-to-date information, some of the information provided is gathered from third parties and has not been independently verified by e-zoomed. While the information from the third party sources is believed to be reliable, no warranty, express or implied, is made by e-zoomed regarding the accuracy, adequacy, completeness, legality, reliability or usefulness of any information. This disclaimer applies to both isolated and aggregate uses of this information.


Featured Articles



Featured Products



Author

Ashvin Suri

Ashvin has been involved with the renewables, energy efficiency and infrastructure sectors since 2006. He is passionate about the transition to a low-carbon economy and electric transportation. Ashvin commenced his career in 1994, working with US investment banks in New York. Post his MBA from the London Business School (1996-1998), he continued to work in investment banking at Flemings (London) and JPMorgan (London). His roles included corporate finance advisory, M&A and capital raising. He has been involved across diverse industry sectors, to include engineering, aerospace, oil & gas, airports and automotive across Asia and Europe. In 2010, he co-founded a solar development platform, for large scale ground and roof solar projects to include, the UK, Italy, Germany and France. He has also advised on various renewable energy (wind and solar) utility scale projects working with global institutional investors and independent power producers (IPP’s) in the renewable energy sector. He has also advised in key international markets like India, to include advising large-scale industrial and automotive group in India. Ashvin has also advised Indian Energy, an IPP backed by Guggenheim (a US$ 165 billion fund). He has also advised a US$ 2 billion, Singapore based group. Ashvin has also worked in the real estate and infrastructure sector, to including working with the Matrix Group (a US$ 4 billion property group in the UK) to launch one of the first few institutional real estate funds for the Indian real estate market. The fund was successfully launched with significant institutional support from the UK/ European markets. He has also advised on water infrastructure, to include advising a Swedish clean technology company in the water sector. He has also been involved with a number of early stage ventures.

Buy Electric Driving Products

Sign up for e-zoomed news and offers

This site uses technical cookies to guarantee an optimal and fast navigation, and analysis cookies to elaborate statistics.
You can visit the Cookie Policy to get more insights or to block the use of all or some cookies, by selecting the Cookie Settings.
By choosing Accept, you give your permission to use the abovementioned cookies.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

We use Google Tag Manager to monitor our traffic and to help us AB test new features.

Decline all Services
Accept all Services